欢迎访问铁路通信信号工程技术,今天是 English

铁路通信信号工程技术 ›› 2025, Vol. 22 ›› Issue (1): 28-34,83.DOI: 10.3969/j.issn.1673-4440.2025.01.004

• • 上一篇    下一篇

基于施工天窗日的重载铁路货运量预测

周 瑾1,2,刘子扬1,2,刘永壮1,2,马 锐1,2   

  1. 1.北京全路通信信号研究设计院集团有限公司,北京 100070;
    2.列车自主运行智能控制铁路行业工程研究中心, 北京 100070
  • 收稿日期:2024-01-27 修回日期:2024-10-10 出版日期:2025-01-25 发布日期:2025-01-25
  • 通讯作者: 周瑾(1994—),女,工程师,硕士,主要研究方向:数据挖掘,邮箱:zhoujin@crscd.com.cn
  • 基金资助:
    国家重点研发计划资助项目(2023YFB3907300);中国神华能源股份有限公司科研项目(SHGF-22-02)

Prediction of Heavy-Haul Railway Freight Volume Considering Days of Track Possession for Construction Purposes

Zhou Jin1, 2,  Liu Ziyang1, 2,  Liu Yongzhuang1, 2,  Ma Rui1, 2#br#

#br#
  

  1. 1. CRSC Research & Design Institute Group Co., Ltd., Beijing 100070, China;
    2. Engineering Research Center of Railway Industry of Intelligent and Autonomous Train Control, Beijing 100070, China
  • Received:2024-01-27 Revised:2024-10-10 Online:2025-01-25 Published:2025-01-25

摘要: 货运量是重载铁路运输日常管理最重要的指标之一,基于重载铁路运输大数据分析平台,针对重载铁路货运生产调度中每日货运量预测的问题,考虑不同线路施工天窗对货运量的影响,构建基于LSTM的货运量预测模型。建立某厂矿铁路集团、子公司货运量预测数据集,基于施工天窗信息特点对LSTM模型进行改造,通过训练与调参,算法在真实数据集上比ARIMA、原生LSTM、GRU等模型效果提升明显,能较好解决日货运量数据波动大和非平稳性突出的问题。模型效果验证后在综合调度信息系统上线,根据新增数据每日进行推算和展示,减轻了货运统计分析人员的工作负担。

关键词: 重载铁路, 货运量, 长短记忆模型, 施工天窗

Abstract: Freight volume is one of the most important indicators for the daily management of heavy-haul railway transport. Using the big data analysis platform for heavy-haul railways, this paper addresses the issue of daily freight volume prediction in the freight transport production and dispatching activities of heavy-haul railways. Considering the impact of track possession for construction purposes on freight volume for different railway lines, it establishes a freight volume prediction model based on LSTM. Using the freight-volume prediction datasets established for a certain railway group company in the mining industry and its subsidiary companies, this paper also modifies the LSTM model by leveraging the information and characteristics of track possession for construction purposes. Through training and parameter adjustment, the proposed model achieves significant performance improvements compared with such models as ARIMA, original LSTM and GRU when tested on the real datasets. It can effectively address the challenges of large fluctuation and notable instability in daily freight volume data. After effectiveness verification, the proposed model is deployed in the comprehensive dispatching information system. It performs daily calculations and displays result updates based on additional data, thereby reducing the workload of freight statistics analysts.

Key words:  , heavy-haul railway, freight volume, LSTM, track possession for construction purposes

中图分类号: