[1]宋宗莹,王文斌,刘子扬,等.重载铁路运输大数据分析平台架构设计研究[J].铁路通信信号工程技术,2023,20(11):44-49.
Song Zongying, Wang Wenbin, Liu Ziyang, et al. Design and Research on Architecture of Big Data Analytics Platform in Heavy-Haul Railway Transportation[J]. Railway Signalling & Communication Engineering, 2023, 20(11): 44-49.
[2]倪继娜,张巍,张栋.大秦铁路煤炭运输需求分析与预测[J].铁道货运,2020,38(1):49-54.
Ni Jina, Zhang Wei, Zhang Dong. A Study on the Analysis and Forecast of Coal Transportation Demand on Datong-Qinhuangdao Railway[J]. Railway Freight Transport, 2020, 38(1): 49-54.
[3]何西健.胶州铁路物流中心运量预测研究[J].铁道运输与经济,2020,42(7):97-102.
He Xijian. Freight Volume Forecast of Jiaozhou Railway Logistics Center[J]. Railway Transport and Economy, 2020, 42(7): 97-102.
[4]余姣姣.基于SVM的铁路货运站装车数预测[J].物流技术,2019,38(3):38-42.
Yu Jiaojiao. Prediction on Car Loading Quantities of Railway Freight Stations Based on SVM[J]. Logistics Technology, 2019, 38(3): 38-42.
[5]陈鹏芳,孟建军,李德仓,等.基于改进LSSVM模型的区域铁路货运量预测[J].铁道运输与经济,2022,44(2):59-65.
Chen Pengfang, Meng Jianjun, Li Decang, et al. Forecast of Regional Railway Freight Volume Based on Improved LSSVM Model[J]. Railway Transport and Economy, 2022, 44(2): 59-65.
[6]张英贵,杨蕙瑜,雷定猷.基于组合输入ES-GA-BP的中欧班列货运量预测[J].深圳大学学报(理工版),2022,39(2):168-176.
Zhang Yinggui, Yang Huiyu, Lei Dingyou. Freight Volume Forecast of China Railway Express Based on ES-GA-BP with Combined Input[J]. Journal of Shenzhen University (Science and Engineering), 2022, 39(2): 168-176.
[7]程肇兰,张小强,梁越.基于LSTM网络的铁路货运量预测[J].铁道学报,2020,42(11):15-21.
Cheng Zhaolan, Zhang Xiaoqiang, Liang Yue. Railway Freight Volume Prediction Based on LSTM Network[J]. Journal of the China Railway Society, 2020, 42(11): 15-21.
[8]谭雪,张小强.基于GRU深度网络的铁路短期货运量预测[J].铁道学报,2020,42(12):28-35.
Tan Xue, Zhang Xiaoqiang. GRU Deep Neural Network Based Short-Term Railway Freight Demand Forecasting[J]. Journal of the China Railway Society, 2020, 42(12): 28-35.
[9]郭洪鹏,刘斌,肖尧.基于Bi-LSTM网络的铁路短期货运量预测研究[J].铁道货运,2022,40(2):52-58.
Guo Hongpeng, Liu Bin, Xiao Yao. Short-Term Railway Freight Volume Prediction Based on Bi-LSTM Network[J]. Railway Freight Transport, 2022, 40(2): 52-58.
[10]杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J].计算机应用,2018,38(Z2):1-6,26.
Yang Li, Wu Yuxi, Wang Junli, et al. Research on Recurrent Neural Network[J]. Journal of Computer Applications, 2018, 38(Z2): 1-6, 26.
[11] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997(9): 1735-1780.
[12] Chung J, Gulcehre C, Cho K, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[EB/OL]. 2014: 1412.3555.https://arxiv.org/abs/1412.3555v1
[13] Sutskever I, Vinyals O, Le Q V. Sequence to Sequence Learning with Neural Networks[J]. Advances in Neural Information Processing Systems, 2014(4): 3104-3112.
[14] Kim T, Kim J, Tae Y, et al. Reversible Instance Normalization for Accurate Time-Series Forecasting Against Distribution Shift[C]. International Conference on Learning Representations, 2022.
[15]刘秋成.铁路货运增量调度指挥优化对策[J].铁道货运,2020,38(9):1-5,11.
Liu Qiucheng. Strategy of Optimizing Traffic Control in Freight Traffic Volume Increase[J]. Railway Freight Transport, 2020, 38(9): 1-5, 11.
[16]谢玉霞.铁路局调度日计划协同编制过程建模研究[J].铁道运输与经济,2015,37(1):22-28.
Xie Yuxia. Study on Process Modeling of Coordinative Drawing in Daily Shift Traffic Plan by Railway Administration[J]. Railway Transport and Economy, 2015, 37(1): 22-28.
[17]汤银英,朱星龙,李龙.基于SARIMA模型的铁路月度客运量预测[J].交通运输工程与信息学报,2019,17(1):25-32.
Tang Yinying, Zhu Xinglong, Li Long. Monthly Railway Passenger Traffic Volume Forecasting Based on SARIMA Model[J]. Journal of Transportation Engineering and Information, 2019, 17(1): 25-32.
[18]汤兆平,孙剑萍,杜相,等.基于ARIMA模型的N铁路局管内物流需求预测研究[J].经济问题探索,2014(7):76-81.
Tang Zhaoping, Sun Jianping, Du Xiang, et al. Research on Forecasting Logistics Demand in N Railway Bureau Based on ARIMA Model[J]. Inquiry into Economic Issues, 2014(7): 76-81.
[19]章敏敏,徐和平,王晓洁,等.谷歌TensorFlow机器学习框架及应用[J].微型机与应用,2017,36(10):58-60.
Zhang Minmin, Xu Heping, Wang Xiaojie, et al. Application of Google TensorFlow Machine Learning Framework[J]. Microcomputer & Its Applications, 2017, 36(10): 58-60.
[20]刘磊,徐效宁,李辉,等.车站站名与电务设备相关数据的关联性研究[J].铁路通信信号工程技术,2023,20(5):1-5,20.
Liu Lei, Xu Xiaoning, Li Hui, et al. Study on Association between Railway Station Name and Signaling Equipment Data[J]. Railway Signalling & Communication Engineering, 2023, 20(5): 1-5, 20.
|