欢迎访问铁路通信信号工程技术,今天是 English

铁路通信信号工程技术 ›› 2025, Vol. 22 ›› Issue (2): 1-10.DOI: 10.3969/j.issn.1673-4440.2025.02.001

• •    下一篇

轨道交通基础设施自主无人机智能巡检技术现状与发展趋势

秦 勇1,2,张紫城1,2,杨怀志3,4,孟凡腾1,2,崔 京1,2,仇宁海1,2,孟 彤1,2,刘鹏帅1,2,汪 洋1,2,王志鹏1,2   

  1. 1.北京交通大学先进轨道交通自主运行全国重点实验室,北京 100044;
    2.运营主动安全保障与风险防控铁路行业重点实验室,北京 100044;
    3.京沪高速铁路股份有限公司,北京 100038;
    4.京福铁路客运专线安徽有限责任公司,合肥 230031
  • 收稿日期:2025-01-09 修回日期:2025-02-10 出版日期:2025-02-25 发布日期:2025-02-25
  • 基金资助:
    国家重点研发计划项目(2022YFB4300600);先进轨道交通自主运行全国重点实验室自主研究课题项目(RAO2023ZZ003);京沪高速铁路股份有限公司科技研究项目(京沪科研-2024-16)

Current Status and Development Trends of Autonomous UAV Intelligent Inspection Technology for Railway Infrastructure

Qin Yong1, 2, Zhang Zicheng1, 2, Yang Huaizhi3, 4, Meng Fanteng1, 2, Cui Jing1, 2, Qiu Ninghai1, 2, Meng Tong1, 2, Liu Pengshuai1, 2, Wang Yang1, 2, Wang Zhipeng1, 2   

  1. 1. State Key Laboratory of Advanced Rail Autonomous Operation, Beijing Jiaotong University, Beijing    100044, China;
    2. Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing    100044, China;
    3. Beijing-Shanghai High Speed Railway Co., Ltd., Beijing    100038, China;
    4. Beijing-Fuzhou Passenger Dedicated Railway Line Anhui Co., Ltd., Hefei    230031, China
  • Received:2025-01-09 Revised:2025-02-10 Online:2025-02-25 Published:2025-02-25

摘要: 轨道交通既有基础设施服役时间增长,受环境和自然灾害影响性能劣化,病害频发,需先进巡检技术掌握其服役状态。现有机械与传感设备巡检存在频率低、覆盖范围有限、智能分析能力不足等问题,在桥梁、隧道口等区域巡检盲区多。无人机巡检具有高空作业、远距离覆盖、受地形与天窗限制小的优势。围绕轨道交通无人机智能巡检分析系统的 “边云协同” 分布式架构,探讨边缘端技术、云端技术及智能分析模型协同优化轨道基础设施巡检任务的方式,通过实际工程应用案例验证该技术的巡检价值,并基于无人机系统自主化等级,对未来无人机技术在轨道交通基础设施巡检中的潜在应用场景和研究方向进行展望。

关键词: 轨道交通基础设施, 自主无人机, 智能巡检, 边云协同

Abstract: With the extended service life of existing railway infrastructure, its performance deteriorates due to the impact of the environment and natural disasters, resulting in frequent damages. Advanced inspection technologies are required to comprehensively monitor its service status. Current mechanical and sensor-assisted inspection methods have problems such as low inspection frequency, limited coverage, and insufficient intelligent analysis capabilities. There are many inspection blind spots in areas like bridges, tunnel entrances, etc. UAV inspection has advantages such as aerial operation, long-distance coverage, and less restriction by terrain and construction windows. This paper focuses on the "edge-cloud collaboration" distributed architecture of the UAV intelligent inspection analysis system for rail transport. It explores how edge-end technologies, cloud technologies, and intelligent analysis models collaborate to optimize the inspection tasks of railway infrastructure. The inspection value of this technology is verified through practical engineering application cases. Based on the autonomy level of the UAV system, the potential application scenarios and research directions of future UAV technologies in the inspection of railway infrastructure are envisioned.

Key words: railway infrastructure, autonomous unmanned aerial vehicles, intelligent inspection, edge-cloud collaboration

中图分类号: