[1]人民铁道网.中国国家铁路集团有限公司2023年统计公报[EB/OL].(2024-03-01)[2024-05-29].https://www.peoplerail.com/rail/show-2020-532996-1.html.
[2]胡昊.面向高铁运行环境安全的侵限监测关键技术研究[D].北京:中国铁道科学研究院,2022:25-30.
[3]陈荣超.公跨营运高铁立交桥异物侵限监测系统重难点分析[J].铁路通信信号工程技术,2024,21(2):32-36.
Chen Rongchao. Analysis of Key and Difficult Points of Foreign Object Intrusion Monitoring System for Highway Crossing High-speed Railway[J]. Railway Signalling & Communication Engineering, 2024, 21(2): 32-36.
[4]傅荟瑾.基于深度学习的高铁周界入侵监测方法研究[D].北京:中国铁道科学研究院,2023:2-3.
[5]管岭,贾利民,谢征宇.融合注意力机制的轨道入侵异物检测轻量级模型研究[J].铁道学报,2023,45(5):72-81.
Guan Ling, Jia Limin, Xie Zhengyu. Research on Lightweight Model for Railway Intrusion Detection Integrating Attention Mechanism[J]. Journal of the China Railway Society, 2023, 45(5): 72-81.
[6]周晏.动车组受电弓状态图像检测技术研究[J].铁路通信信号工程技术,2023,20(1):14-19.
Zhou Yan. Implementation of Image Detection System for EMU Pantograph Status[J]. Railway Signalling & Communication Engineering, 2023, 20(1): 14-19.
[7]赵宗扬,康杰虎,梁健,等.基于LGF-Net的全天候轨道入侵异物智能检测系统[J].仪器仪表学报,2023,44(9):287-301.
Zhao Zongyang, Kang Jiehu, Liang Jian, et al. All-Weather Intelligent Detection System for Railway Intrusion Obstacles Based on LGF-Net[J]. Chinese Journal of Scientific Instrument, 2023, 44(9): 287-301.
[8]胡行涛,刘大明,虞发桐.基于FCN不确定性特征的铁路入侵异物检测算法[J].计算机应用与软件,2023,40(4):141-146.
Hu Xingtao, Liu Daming, Yu Fatong. Foreign Intrusion Object Detection Algorithm for Railway Intrusion Based on Fcn Uncertainty[J]. Computer Applications and Software, 2023, 40(4): 141-146.
[9]赵宗扬,康杰虎,吴斌,等.基于FRL-Net的高鲁棒性多尺度小样本轨道入侵异物检测方法研究[J].仪器仪表学报,2024,45(1):239-249.
Zhao Zongyang, Kang Jiehu, Wu Bin, et al. Research on the High Robust Multi-Scale Few-Shot Railway Intrusion Obstacles Detection Method Based on FRL-Net[J]. Chinese Journal of Scientific Instrument, 2024, 45(1): 239-249.
[10]王瑞峰,陈小屹.基于改进YOLOv5的轨道异物入侵检测算法研究[J].云南大学学报(自然科学版),2023,45(4):799-806.
Wang Ruifeng, Chen Xiaoyi. Research on Orbital Foreign Object Intrusion Detection Algorithm Based on Improved YOLOv5[J]. Journal of Yunnan University (Natural Sciences Edition), 2023, 45(4): 799-806.
[11]晏朋,李遇鑫,李治林,等.基于改进YOLOv7的高铁异物入侵检测算法[J].无线电工程,2024,54(5):1099-1109.
Yan Peng, Li Yuxin, Li Zhilin, et al. High-Speed Rail Foreign Object Intrusion Detection Algorithm Based on Improved YOLOv7[J]. Radio Engineering, 2024, 54(5): 1099-1109.
[12]郑仲星,刘伟铭.基于快速扩散生成模型的地铁轨道异物入侵检测算法研究[J].铁道标准设计,2024,68(6):191-200.
Zheng Zhongxing, Liu Weiming. Research on Foreign Object Intrusion Detection Algorithm of Metro Rail Based on Fast Diffusion Generation Model[J]. Railway Standard Design, 2024, 68(6): 191-200.
[13]胡萍.基于图像处理的城市轨道交通线路异物检测与识别[J].自动化与仪器仪表,2022(7):86-90.
Hu Ping. Hot Spot Analysis Visualization Research Based on Big Data[J]. Automation & Instrumentation, 2022(7): 86-90.
[14] Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Iage Recognition[EB/OL]. (2014-09-04)[2024-05-29]. https://arxiv.org/abs/1409.1556.
[15] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA.IEEE, 2016: 770-778.
[16] Howard A, Sandler M, Chen Bo, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).October 27-November 2, 2019, Seoul, Korea (South). IEEE, 2019: 1314-1324.
[17] Redmon J, Farhadi A. Yolov3:An Incremental Improvement[EB/OL]. (2018-04-08)[2024-05-29]. https://arxiv.org/abs/1804.02767.
[18] Jocher G, YOlOv8[EB/OL]. (2023-01-10)[2024-05-29]. https://github.com/ultralytics/ultralytics?tab=readme-ov-file.
[19] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[M]//Navab N, Hornegger J, Wells W M, et al.Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241.
[20]黄新波.基于图像感知的输电线路智能巡检综述[J].高电压技术,2024,50(5):1826-1841.
Huang Xinbo. Survey of Intelligent Inspection Based on Image Perception[J]. High Voltage Engineering, 2024, 50(5): 1826-1841.
[21]赵红专,张继康,潘佳雯,等.基于改进视觉算法的自动驾驶风险预判模型[J].交通运输系统工程与信息,2024,24(5):79-90,139.
Zhao Hongzhuan, Zhang Jikang, Pan Jiawen, et al. Automatic Driving Risk Prediction Model Based on Improved Vision Algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(5): 79-90, 139.
[22]许鲲.基于多目标识别的智能安防视频监控研究[J].自动化技术与应用,2024,43(7):168-171.
Xu Kun. Research on Intelligent Security Video Surveillance Based on Multi-Target Recognition[J]. Techniques of Automation and Applications, 2024, 43(7): 168-171.
[23]朱力强,许力之,赵文钰,等.铁路周界入侵目标多尺度特征感知算法[J].中国铁道科学,2024,45(1):215-226.
Zhu Liqiang, Xu Lizhi, Zhao Wenyu, et al. Multi-Scale Feature Perception Algorithm for Railway Perimeter Intrusion Object[J]. China Railway Science, 2024, 45(1): 215-226.
[24]李传,谢征宇,李永玲,等.高速铁路周界入侵视频图像样本库[J].中国铁路,2021(3):136-143.
Li Chuan, Xie Zhengyu, Li Yongling, et al. Video Image Sample Library of HSR Perimeter Intrusion[J]. China Railway, 2021(3): 136-143.
[25]王昊.铁路综合视频监控系统技术规范发展与解析[J].中国铁路,2023(2):113-119.
Wang Hao. Development and Analysis of Technical Specifications for Railway Integrated Video Surveillance System[J]. China Railway, 2023(2): 113-119.
[26] Lin Junting, Peng Jiawei. Adaptive Inverse Perspective Mapping Transformation Method for Ballasted Railway Based on Differential Edge Detection and Improved Perspective Mapping Model[J]. Digital Signal Processing, 2023, 135: 103944.
[27]李传.基于计算机视觉的铁路周界分割及异常感知研究[D].北京:北京交通大学,2022:3-4.
[28]孙志科.应用图像识别技术开发联锁自动测试工具的研究[J].铁路通信信号工程技术,2023,20(2):7-12.
Sun Zhike. Research on Development of Interlocking Automatic Test Tool Using Image Recognition Technology[J]. Railway Signalling & Communication Engineering, 2023, 20(2): 7-12.
|