[1]张焕增,李茂强,刘英杰.基于视觉的轨道交通信号灯识别算法研究[J].电子制作,2020(18):53-55.
Zhang Huanzeng, Li Maoqiang, Liu Yingjie. Research on Recognition Algorithm of Rail Transit Traffic Lights Based on Vision[J]. Practical Electronics, 2020(18): 53-55.
[2]李兆龄.城市轨道交通信号系统互联互通的研究[J].铁路通信信号工程技术,2016,13(5):50-53.
Li Zhaoling. Interoperability of Signal Systems for Urban Rail Transit[J]. Railway Signalling & Communication Engineering, 2016, 13(5): 50-53.
[3]陈坦.以列车为核心的CBTC系统安全防护方法研究[D].北京:北京交通大学,2019.
[4]常峰.全自动限速运行模式方案研究[J].铁路通信信号工程技术,2023,20(4):63-67.
Chang Feng. Research on Fully Automatic Speed-Restriction Operation Mode[J]. Railway Signalling & Communication Engineering, 2023, 20(4): 63-67.
[5]汪小勇.城市轨道交通基于车车通信的列车自主运行系统探讨[J].中国铁路,2020(9):77-81.
Wang Xiaoyong. Discussion on Train Autonomous Circumambulate System Based on Vehicleto-Vehicle Communication in Urban Rail Transit[J]. China Railway, 2020(9): 77-81.
[6]郭玉珊,成正波,陈绍文.基于车车通信系统的折返能力研究[J].铁路通信信号工程技术,2021,18(7):77-80.
Guo Yushan, Cheng Zhengbo, Chen Shaowen. Study on Turn-back Capacity Based on TACS[J]. Railway Signalling & Communication Engineering, 2021, 18(7): 77-80.
[7]张祎.城市轨道交通正线信号灯显示的优化及其点灯电路设计[J].城市轨道交通研究,2020,23(11):169-171,180.
Zhang Yi. Display Optimization and Lighting Circuit Design for Urban Rail Transit Main Line Signal Lights[J]. Urban Mass Transit, 2020, 23(11): 169-171, 180.
[8]刘爱民.机车信号的故障分析与处理[J].中国新技术新产品,2018(10):91-92.
Liu Aimin. Fault Analysis and Treatment of Locomotive Signal[J]. New Technology & New Products of China, 2018(10): 91-92.
[9] De Charette R, Nashashibi F. Real Time Visual Traffic Lights Recognition Based on Spot Light Detection and Adaptive Traffic Lights Templates[C]//2009 IEEE Intelligent Vehicles Symposium. Xi’an, China. IEEE, 2009: 358-363.
[10] Omachi M, Omachi S. Detection of Traffic Light Using Structural Information[C]//IEEE 10th International Conference on Signal Processing Proceedings.Beijing, China. IEEE, 2010: 809-812.
[11]谷明琴,蔡自兴,李仪.应用圆形度和颜色直方图的交通信号灯识别[J].计算机工程与设计,2012,33(1):243-247.
Gu Mingqin, Cai Zixing, Li Yi. Traffic Light Recognition with Circularity and Color Histogram[J]. Computer Engineering and Design, 2012, 33(1): 243-247.
[12]冯霞飞,秦丽娟.基于改进Hough变换的圆形交通信号灯的检测[J].电脑迷,2017(17):265.
Feng Xiafei, Qin Lijuan. Detection of Circular Traffic Lights Based on Improved Hough Transform[J]. PC Fan, 2017(17): 265.
[13]谭思奇.基于深度学习的道路交通信号灯检测与识别方法研究[D].重庆:重庆交通大学,2022.
[14]邓天民,谭思奇,蒲龙忠.基于改进YOLOv5s的交通信号灯识别方法[J].计算机工程,2022,48(9):55-62.
Deng Tianmin, Tan Siqi, Pu Longzhong. Traffic Light Recognition Method Based on Improved YOLOv5s[J]. Computer Engineering, 2022, 48(9): 55-62.
[15]李在润,宁芊.基于TTFNet的实时交通信号灯检测[J].现代计算机,2021(17):118-123.
Li Zairun, Ning Qian. Real-Time Traffic Light Detection Based on TTFNet[J]. Modern Computer, 2021(17): 118-123.
[16]叶嘉欣.基于深度学习的两阶段目标检测算法综述[J].互联网周刊,2023(5):16-18.
Ye Jiaxin. Overview of Two-Stage Target Detection Algorithms Based on Deep Learning[J]. China Internet Week, 2023(5): 16-18.
[17] Redmon J, Divvala S, Girshick R, et al. You only Look Once:Unified,Real-Time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 779-788.
[18]刘瑞锦,何章鸣.基于YOLOv8的卫星遥感图像快速目标检测方法[J].空间控制技术与应用,2023,49(5):89-97.
Liu Ruijin, He Zhangming. A Fast Target Detection Method for Satellite Remote Sensing Images Based on YOLOv8[J]. Aerospace Control and Application, 2023, 49(5): 89-97.
[19]李松,史涛,井方科.改进YOLOv8的道路损伤检测算法[J].计算机工程与应用,2023,59(23):165-174.
Li Song, Shi Tao, Jing Fangke. Improved Road Damage Detection Algorithm of YOLOv8[J]. Computer Engineering and Applications, 2023, 59(23): 165-174.
[20]袁红春,陶磊.基于改进的Yolov8商业渔船电子监控数据中鱼类的检测与识别[J].大连海洋大学学报,2023,38(3):533-542.
Yuan Hongchun, Tao Lei. Detection and Identification of Fish in Electronic Monitoring Data of Commercial Fishing Vessels Based on Improved Yolov8[J]. Journal of Dalian Ocean University, 2023, 38(3): 533-542.
[21]汪友明,徐攀峰.基于改进Adam优化器的CNN电镜医学图像分类[J].西安邮电大学学报,2019,24(5):26-33.
Wang Youming, Xu Panfeng. CNN Electron Microscope Images Classification Based on Improved Adam Optimizer[J]. Journal of Xi’an University of Posts and Telecommunications, 2019, 24(5): 26-33.
|