欢迎访问铁路通信信号工程技术,今天是 English

铁路通信信号工程技术 ›› 2024, Vol. 21 ›› Issue (9): 92-98.DOI: 10.3969/j.issn.1673-4440.2024.09.015

• • 上一篇    下一篇

基于YOLOv8算法的轨道信号灯检测研究

晋云功   

  1. 通号国际控股有限公司,北京 100070
  • 收稿日期:2024-04-15 修回日期:2024-09-11 出版日期:2024-09-25 发布日期:2024-09-25
  • 作者简介:晋云功(1982—),男,高级工程师,硕士,主要研究方向:铁路信号,邮箱:jinyungong@crsc.cn。

Research on Signal Lamp Detection for Rail Transport Based on YOLOv8 Algorithm

Jin Yungong   

  1. CRSC International Co., Ltd., Beijing    100070, China
  • Received:2024-04-15 Revised:2024-09-11 Online:2024-09-25 Published:2024-09-25

摘要: 为提高信号灯检测智能化水平,提出一种基于YOLOv8算法的智能化信号灯检测方法。将自建信号灯数据集按4:1随机划分为训练集和验证集,经预处理后训练深度学习模型。结果显示模型能够收敛,能够端对端地实现信号灯位置及颜色的检测,对信号灯检测任务具有较好的应用潜力。

关键词: 信号灯检测, YOLOv8, 深度学习, 平均精度均值(mAP), 智能化轨道交通

Abstract: To improve the intelligence level of signal lamp detection, an intelligent signal lamp detection method based on YOLOv8 algorithm is proposed, which can randomly divide the self built signal lamp dataset into a training set and a validation set in a 4:1 ratio, and train a deep learning model after preprocessing. The results show that the model can converge and achieve end-to-end detection of signal lamp position and color, which has good potential for signal lamp detection tasks.

Key words: signal lamp detection, YOLOv8, deep learning, mean average precision (mAP), intelligent rail transport

中图分类号: